Questionable Motives

January 2, 2010

Why do herbicides become ineffective in just a few generations? And what does that have to do with people?

Filed under: agriculture,Bill Maher,Discovery,Evolution,Genetics,Science — tildeb @ 12:56 am

“While the long term effects of genome mutations are quite well understood, we did not know how often new mutations arise in the first place,” said Detlef Weigel, director at the Max Planck Institute in Germany. It is routine today to compare the genomes of related animal or plant species. Such comparisons, however, ignore mutations that have been lost in the millions of years since two species separated. The teams of Weigel and his colleague Michael Lynch at Indiana University therefore wanted to scrutinize the signature of evolution before selection occurs. To this end, they followed all genetic changes in five lines of the mustard relative Arabidopsis thaliana that occurred during 30 generations. In the genome of the final generation they then searched for differences to the genome of the original ancestor.

The painstakingly detailed comparison of the entire revealed that in over the course of only a few years some 20 DNA building blocks, so called base pairs, had been mutated in each of the five lines. “The probability that any letter of the genome changes in a single generation is thus about one in 140 million,” explains Michael Lynch.

To put it differently, each seedling has on average one new mutation in each of the two copies of its genome that it inherits from mum and dad. To find these tiny alterations in the 120 million base pair genome of Arabidopsis was akin to finding the proverbial needle in a haystack, says Weigel: “To ferret out where the genome had changed was only possibly because of new methods that allowed us to screen the entire genome with high precision and in very short time.” Still, the effort was daunting: To distinguish true new mutations from detection errors, each letter in each genome had to be checked 30 times.

The number of new mutations in each individual plant might appear very small. But if one starts to consider that they occur in the genomes of every member of a species, it becomes clear how fluid the genome is: In a collection of only 60 million Arabidopsis plants, each letter in the genome is changed, on average, once. For an organism that produces thousands of seeds in each generation, 60 million is not such a big number at all.

Turning to the larger picture, Weigel suggests that changes in the human genome are at least as rapid as in Arabidopsis: “If you apply our findings to humans, then each of us will have on the order of 60 new that were not present in our parents.” With more than six billion people on our planet, this implies that on average each letter of the human genome is altered in dozens of fellow citizens.

Read the full article here.

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: